Genetic Algorithms & Modeling

Soft Computing

Genetic algorithms & Modeling, topics: Introduction, why genetic algorithm? search optimization methods, evolutionary algorithms (EAs), genetic algorithms (GAs) - biological background, working principles; basic genetic algorithm, flow chart for Genetic Programming. Encoding: binary encoding, value encoding, permutation encoding, tree encoding. Operators of genetic algorithm: random population, reproduction or selection - roulette wheel selection, Boltzmann selection; Fitness function; Crossover - one-point crossover, two-point crossover, uniform crossover, arithmetic, heuristic; Mutation - flip bit, boundary, Gaussian, non-uniform, and uniform; Basic genetic algorithm: examples - maximize function \(f(x) = x^2 \) and two bar pendulum.
1. Introduction

2. Encoding
Binary Encoding, Value Encoding, Permutation Encoding, Tree Encoding.

3. Operators of Genetic Algorithm
Random population, Reproduction or Selection : Roulette wheel selection, Boltzmann selection; Fitness function; Crossover: One-point crossover, Two-point crossover, Uniform crossover, Arithmetic, Heuristic; Mutation: Flip bit, Boundary, Gaussian, Non-uniform, and Uniform;

4. Basic Genetic Algorithm
Examples : Maximize function \(f(x) = x^2 \) and Two bar pendulum.

5. References
Genetic Algorithms & Modeling

What are GAs?

- Genetic Algorithms (GAs) are adaptive heuristic search algorithm based on the evolutionary ideas of natural selection and genetics.

- Genetic algorithms (GAs) are a part of Evolutionary computing, a rapidly growing area of artificial intelligence. GAs are inspired by Darwin's theory about evolution - "survival of the fittest".

- GAs represent an intelligent exploitation of a random search used to solve optimization problems.

- GAs, although randomized, exploit historical information to direct the search into the region of better performance within the search space.

- In nature, competition among individuals for scanty resources results in the fittest individuals dominating over the weaker ones.
1. Introduction

Solving problems mean looking for solutions, which is best among others.

Finding the solution to a problem is often thought:

- In computer science and AI, as a process of search through the space of possible solutions. The set of possible solutions defines the search space (also called state space) for a given problem. Solutions or partial solutions are viewed as points in the search space.

- In engineering and mathematics, as a process of optimization. The problems are first formulated as mathematical models expressed in terms of functions and then to find a solution, discover the parameters that optimize the model or the function components that provide optimal system performance.
Why Genetic Algorithms?

It is better than conventional AI; It is more robust.

- unlike older AI systems, the GA's do not break easily even if the inputs changed slightly, or in the presence of reasonable noise.

- while performing search in large state-space, multi-modal state-space, or n-dimensional surface, a genetic algorithms offer significant benefits over many other typical search optimization techniques like - linear programming, heuristic, depth-first, breath-first.

"Genetic Algorithms are good at taking large, potentially huge search spaces and navigating them, looking for optimal combinations of things, the solutions one might not otherwise find in a lifetime." Salvatore Mangano Computer Design, May 1995.
1 Optimization

Optimization is a process that finds a best, or optimal, solution for a problem. The Optimization problems are centered around three factors:

- **An objective function**: which is to be minimized or maximized;

 Examples:
 1. In manufacturing, we want to maximize the profit or minimize the cost.
 2. In designing an automobile panel, we want to maximize the strength.

- **A set of unknowns or variables**: that affect the objective function,

 Examples:
 1. In manufacturing, the variables are amount of resources used or the time spent.
 2. In panel design problem, the variables are shape and dimensions of the panel.

- **A set of constraints**: that allow the unknowns to take on certain values but exclude others;

 Examples:
 1. In manufacturing, one constrain is, that all "time" variables to be non-negative.
 2. In the panel design, we want to limit the weight and put constrain on its shape.

An optimization problem is defined as: Finding values of the variables that minimize or maximize the **objective function** while satisfying the **constraints**.
Many optimization methods exist and categorized as shown below. The suitability of a method depends on one or more problem characteristics to be optimized to meet one or more objectives like:

- low cost,
- high performance,
- low loss

These characteristics are not necessarily obtainable, and requires knowledge about the problem.

Each of these methods are briefly discussed indicating the nature of the problem they are more applicable.
Linear Programming

Intends to obtain the optimal solution to problems that are perfectly represented by a set of linear equations; thus require a priori knowledge of the problem. Here the

- the functions to be minimized or maximized, is called **objective functions**,
- the set of linear equations are called **restrictions**.
- the **optimal solution**, is the one that minimizes (or maximizes) the objective function.

Example: “Traveling salesman”, seeking a minimal traveling distance.
Non-Linear Programming

Intended for problems described by non-linear equations.

The methods are divided into three large groups:

- **Classical**, **Enumerative** and **Stochastic**.

Classical search uses deterministic approach to find best solution. These methods require knowledge of gradients or higher order derivatives. In many practical problems, some desired information are not available, means deterministic algorithms are inappropriate.

The techniques are subdivide into:

- Direct methods, e.g. Newton or Fibonacci
- Indirect methods.

Enumerative search goes through every point (one point at a time) related to the function's domain space. At each point, all possible solutions are generated and tested to find optimum solution. It is easy to implement but usually require significant computation. In the field of artificial intelligence, the enumerative methods are subdivided into two categories:

- Uninformed methods, e.g. Mini-Max algorithm
- Informed methods, e.g. Alpha-Beta and A*,

Stochastic search deliberately introduces randomness into the search process. The injected randomness may provide the necessary impetus to move away from a local solution when searching for a global optimum. e.g., a gradient vector criterion for “smoothing” problems. Stochastic methods offer robustness quality to optimization process.

Among the stochastic techniques, the most widely used are:

- Evolutionary Strategies (ES),
- Genetic Algorithms (GA), and
- Simulated Annealing (SA).

The ES and GA emulate nature’s evolutionary behavior, while SA is based on the physical process of annealing a material.
2 Search Optimization

Among the three Non-Linear search methodologies, just mentioned in the previous slide, our immediate concern is **Stochastic search** which means

- Evolutionary Strategies (ES),
- Genetic Algorithms (GA), and
- Simulated Annealing (SA).

The two other search methodologies, shown below, the **Classical** and the **Enumerative** methods, are first briefly explained. Later the **Stochastic methods** are discussed in detail. All these methods belong to Non-Linear search.

![Non-Linear search methods](image-url)
Classical or Calculus based search

Uses deterministic approach to find best solutions of an optimization problem.

- the solutions satisfy a set of necessary and sufficient conditions of the optimization problem.
- the techniques are subdivide into direct and indirect methods.

◊ Direct or Numerical methods :
 - example: Newton or Fibonacci,
 - tries to find extremes by "hopping" around the search space and assessing the gradient of the new point, which guides the search.
 - applies the concept of "hill climbing", and finds the best local point by climbing the steepest permissible gradient.
 - used only on a restricted set of "well behaved" functions.

◊ Indirect methods :
 - does search for local extremes by solving usually non-linear set of equations resulting from setting the gradient of the objective function to zero.
 - does search for possible solutions (function peaks), starts by restricting itself to points with zero slope in all directions.
Enumerative Search

Here the search goes through every point (one point at a time) related to the function's domain space.

- At each point, all possible solutions are generated and tested to find optimum solution.
- It is easy to implement but usually require significant computation. Thus these techniques are not suitable for applications with large domain spaces.

In the field of artificial intelligence, the enumerative methods are subdivided into two categories: Uninformed and Informed methods.

◊ Uninformed or blind methods:
 - example: Mini-Max algorithm,
 - search all points in the space in a predefined order,
 - used in game playing.

◊ Informed methods:
 - example: Alpha-Beta and A*,
 - does more sophisticated search
 - uses domain specific knowledge in the form of a cost function or heuristic to reduce cost for search.

Next slide shows, the taxonomy of enumerative search in AI domain.
The Enumerative search techniques follows, the traditional search and control strategies, in the domain of Artificial Intelligence.

- the search methods explore the search space "intelligently"; means evaluating possibilities without investigating every single possibility.
- there are many control structures for search; the depth-first search and breadth-first search are two common search strategies.
- the taxonomy of search algorithms in AI domain is given below.
<table>
<thead>
<tr>
<th>Stochastic Search</th>
</tr>
</thead>
<tbody>
<tr>
<td>Here the search methods, include heuristics and an element of randomness (non-determinism) in traversing the search space. Unlike the previous two search methodologies</td>
</tr>
<tr>
<td>– the stochastic search algorithm moves from one point to another in the search space in a non-deterministic manner, guided by heuristics.</td>
</tr>
<tr>
<td>– the stochastic search techniques are usually called Guided random search techniques.</td>
</tr>
</tbody>
</table>

The stochastic search techniques are grouped into two major subclasses:

– Simulated annealing and
– Evolutionary algorithms.

Both these classes follow the principles of evolutionary processes.

◊ **Simulated annealing (SAs)**

– uses a thermodynamic evolution process to search minimum energy states.

◊ **Evolutionary algorithms (EAs)**

– use natural selection principles.
– the search evolves throughout generations, improving the features of potential solutions by means of biological inspired operations.

– **Genetic Algorithms (GAs)** are a good example of this technique.

The next slide shows, the taxonomy of evolutionary search algorithms. It includes the other two search, the Enumerative search and Calculus based techniques, for better understanding of Non-Linear search methodologies in its entirety.
Taxonomy of Search Optimization

Fig. below shows different types of Search Optimization algorithms.

We are interested in Evolutionary search algorithms.

Our main concern is to understand the evolutionary algorithms:
- how to describe the process of search,
- how to implement and carry out search,
- what are the elements required to carry out search, and
- the different search strategies

The Evolutionary Algorithms include:
- Genetic Algorithms and
- Genetic Programming
3 Evolutionary Algorithm (EAs)

Evolutionary Algorithm (EA) is a subset of Evolutionary Computation (EC) which is a subfield of Artificial Intelligence (AI).

Evolutionary Computation (EC) is a general term for several computational techniques. Evolutionary Computation represents powerful search and optimization paradigm influenced by biological mechanisms of evolution: that of natural selection and genetic.

Evolutionary Algorithms (EAs) refers to Evolutionary Computational models using randomness and genetic inspired operations. EAs involve selection, recombination, random variation and competition of the individuals in a population of adequately represented potential solutions. The candidate solutions are referred as chromosomes or individuals.

Genetic Algorithms (GAs) represent the main paradigm of Evolutionary Computation.
- GAs simulate natural evolution, mimicking processes the nature uses: Selection, Crosses over, Mutation and Accepting.
- GAs simulate the survival of the fittest among individuals over consecutive generation for solving a problem.

Development History

<table>
<thead>
<tr>
<th>EC</th>
<th>=</th>
<th>GP</th>
<th>+</th>
<th>ES</th>
<th>+</th>
<th>EP</th>
<th>+</th>
<th>GA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evolutionary Computing</td>
<td></td>
<td>Genetic Programming</td>
<td></td>
<td>Evolution Strategies</td>
<td></td>
<td>Evolutionary Programming</td>
<td></td>
<td>Genetic Algorithms</td>
</tr>
</tbody>
</table>
Genetic Algorithms (GAs) - Basic Concepts

Genetic algorithms (GAs) are the main paradigm of evolutionary computing. GAs are inspired by Darwin's theory about evolution – the "survival of the fittest". In nature, competition among individuals for scanty resources results in the fittest individuals dominating over the weaker ones.

- GAs are the ways of solving problems by mimicking processes nature uses; ie., Selection, Crosses over, Mutation and Accepting, to evolve a solution to a problem.
- GAs are adaptive heuristic search based on the evolutionary ideas of natural selection and genetics.
- GAs are intelligent exploitation of random search used in optimization problems.
- GAs, although randomized, exploit historical information to direct the search into the region of better performance within the search space.

The biological background (basic genetics), the scheme of evolutionary processes, the working principles and the steps involved in GAs are illustrated in next few slides.
Biological Background – Basic Genetics

* Every organism has a set of rules, describing how that organism is built. All living organisms consist of cells.

* In each cell there is same set of chromosomes. Chromosomes are strings of DNA and serve as a model for the whole organism.

* A chromosome consists of genes, blocks of DNA.

* Each gene encodes a particular protein that represents a trait (feature), e.g., color of eyes.

* Possible settings for a trait (e.g. blue, brown) are called alleles.

* Each gene has its own position in the chromosome called its locus.

* Complete set of genetic material (all chromosomes) is called a genome.

* Particular set of genes in a genome is called genotype.

* The physical expression of the genotype (the organism itself after birth) is called the phenotype, its physical and mental characteristics, such as eye color, intelligence etc.

* When two organisms mate they share their genes; the resultant offspring may end up having half the genes from one parent and half from the other. This process is called recombination (cross over).

* The new created offspring can then be mutated. Mutation means, that the elements of DNA are a bit changed. This changes are mainly caused by errors in copying genes from parents.

* The fitness of an organism is measured by success of the organism in its life (survival).
Below shown, the general scheme of evolutionary process in genetic along with pseudo-code.

Pseudo-Code

BEGIN

INITIALISE population with random candidate solution.

EVALUATE each candidate;

REPEAT UNTIL (termination condition) is satisfied DO

1. SELECT parents;
2. RECOMBINE pairs of parents;
3. MUTATE the resulting offspring;
4. SELECT individuals or the next generation;

END.
Search Space

In solving problems, some solution will be the best among others. The space of all feasible solutions (among which the desired solution resides) is called search space (also called state space).

− Each point in the search space represents one possible solution.
− Each possible solution can be "marked" by its value (or fitness) for the problem.
− The GA looks for the best solution among a number of possible solutions represented by one point in the search space.
− Looking for a solution is then equal to looking for some extreme value (minimum or maximum) in the search space.
− At times the search space may be well defined, but usually only a few points in the search space are known.

In using GA, the process of finding solutions generates other points (possible solutions) as evolution proceeds.
SC – GA - Introduction

Working Principles

Before getting into GAs, it is necessary to explain few terms.

- Chromosome: a set of genes; a chromosome contains the solution in form of genes.
- Gene: a part of chromosome; a gene contains a part of solution. It determines the solution. e.g. 16743 is a chromosome and 1, 6, 7, 4 and 3 are its genes.
- Individual: same as chromosome.
- Population: number of individuals present with same length of chromosome.
- Fitness: the value assigned to an individual based on how far or close a individual is from the solution; greater the fitness value better the solution it contains.
- Fitness function: a function that assigns fitness value to the individual. It is problem specific.
- Breeding: taking two fit individuals and then intermingling there chromosome to create new two individuals.
- Mutation: changing a random gene in an individual.
- Selection: selecting individuals for creating the next generation.

Working principles:

Genetic algorithm begins with a set of solutions (represented by chromosomes) called the population.

- Solutions from one population are taken and used to form a new population. This is motivated by the possibility that the new population will be better than the old one.
- Solutions are selected according to their fitness to form new solutions (offspring); more suitable they are, more chances they have to reproduce.
- This is repeated until some condition (e.g. number of populations or improvement of the best solution) is satisfied.
Outline of the Basic Genetic Algorithm

1. [Start] Generate random population of \(n \) chromosomes (i.e. suitable solutions for the problem).
2. [Fitness] Evaluate the fitness \(f(x) \) of each chromosome \(x \) in the population.
3. [New population] Create a new population by repeating following steps until the new population is complete.
 (a) [Selection] Select two parent chromosomes from a population according to their fitness (better the fitness, bigger the chance to be selected).
 (b) [Crossover] With a crossover probability, cross over the parents to form new offspring (children). If no crossover was performed, offspring is the exact copy of parents.
 (c) [Mutation] With a mutation probability, mutate new offspring at each locus (position in chromosome).
 (d) [Accepting] Place new offspring in the new population
4. [Replace] Use new generated population for a further run of the algorithm
5. [Test] If the end condition is satisfied, stop, and return the best solution in current population
6. [Loop] Go to step 2

Note: The genetic algorithm's performance is largely influenced by two operators called crossover and mutation. These two operators are the most important parts of GA.
Fig. Genetic Algorithm – program flow chart
2. **Encoding**

Before a genetic algorithm can be put to work on any problem, a method is needed to encode potential solutions to that problem in a form so that a computer can process.

− One common approach is to encode solutions as binary strings: sequences of 1's and 0's, where the digit at each position represents the value of some aspect of the solution.

Example:

A Gene represents some data (eye color, hair color, sight, etc.).

A chromosome is an array of genes. In binary form

a **Gene** looks like: \((11100010) \)

a **Chromosome** looks like: **Gene1** **Gene2** **Gene3** **Gene4**
\((11000010, 00001110, 001111010, 10100011) \)

A chromosome should in some way contain information about solution which it represents; it thus requires encoding. The most popular way of encoding is a **binary string** like:

Chromosome 1: 1101100100110110
Chromosome 2: 1101111000011110

Each bit in the string represent some characteristics of the solution.

− There are many other ways of encoding, e.g., encoding values as integer or real numbers or some permutations and so on.

− The virtue of these encoding method depends on the problem to work on.
Binary Encoding

Binary encoding is the most common to represent information contained. In genetic algorithms, it was first used because of its relative simplicity.

- In binary encoding, every chromosome is a string of bits: \(0\) or \(1\), like

 Chromosome 1: \(1 0 1 1 0 0 1 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1\)

 Chromosome 2: \(1 1 1 1 1 1 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 1\)

- Binary encoding gives many possible chromosomes even with a small number of alleles ie possible settings for a trait (features).

- This encoding is often not natural for many problems and sometimes corrections must be made after crossover and/or mutation.

Example 1:

One variable function, say \(0\) to \(15\) numbers, numeric values, represented by 4 bit binary string.

<table>
<thead>
<tr>
<th>Numeric value</th>
<th>4-bit string</th>
<th>Numeric value</th>
<th>4-bit string</th>
<th>Numeric value</th>
<th>4-bit string</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 0 0 0</td>
<td>6</td>
<td>0 1 1 0</td>
<td>12</td>
<td>1 1 0 0</td>
</tr>
<tr>
<td>1</td>
<td>0 0 0 1</td>
<td>7</td>
<td>0 1 1 1</td>
<td>13</td>
<td>1 1 0 1</td>
</tr>
<tr>
<td>2</td>
<td>0 0 1 0</td>
<td>8</td>
<td>1 0 0 0</td>
<td>14</td>
<td>1 1 1 0</td>
</tr>
<tr>
<td>3</td>
<td>0 0 1 1</td>
<td>9</td>
<td>1 0 0 1</td>
<td>15</td>
<td>1 1 1 1</td>
</tr>
<tr>
<td>4</td>
<td>0 1 0 0</td>
<td>10</td>
<td>1 0 1 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0 1 0 1</td>
<td>11</td>
<td>1 0 1 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example 2:

Two variable function represented by 4 bit string for each variable.

Let two variables \(X_1, X_2 \) as \((1011 \ 0110)\).

Every variable will have both upper and lower limits as \(X_i^L \leq X_i \leq X_i^U \),

Because 4-bit string can represent integers from 0 to 15,

so \((0000 \ 0000)\) and \((1111 \ 1111)\) represent the points for \(X_1, X_2 \) as

\((X_i^L \ \text{and} \ X_2^L)\) and \((X_i^U \ \text{and} \ X_2^U)\) respectively.

Thus, an \(n \)-bit string can represent integers from 0 to \(2^n - 1 \), i.e. \(2^n \) integers.

Binary Coding

<table>
<thead>
<tr>
<th>Binary Coding</th>
<th>Equivalent integer</th>
<th>Decoded binary substring</th>
</tr>
</thead>
</table>
| 2 | 10 | 0 | 10 | \(S_i \) of length \(n_i \). Then decoded binary substring \(S_i \) is as \(\sum_{k=0}^{K=n_i-1} 2^k S_k \) where \(S_i \) can be 0 or 1 and the string \(S \) is represented as \(S_{n-1} \ldots . . . S_3 S_2 S_1 S_0 \)
| 2 | 5 | 0 | 0 \(0 \times 2^0 = 0 \)
| 2 | 2 | 1 | 2 \(1 \times 2^1 = 2 \)
| 1 | 0 | 0 | 0 \(0 \times 2^2 = 0 \)
| 0 | 1 | 0 | 8 \(1 \times 2^3 = 8 \)

Example: Decoding value

Consider a 4-bit string \((0111)\),

- the decoded value is equal to
 \[2^3 \times 0 + 2^2 \times 1 + 2^1 \times 1 + 2^0 \times 1 = 7 \]
- Knowing \(X_i^L \) and \(X_i^U \) corresponding to \((0000)\) and \((1111)\),
 the equivalent value for any 4-bit string can be obtained as
 \[X_i = X_i^L + \frac{(X_i^U - X_i^L)}{(2^{n_i} - 1)} \times \text{decoded value of string} \]

- For e.g. a variable \(X_i \); let \(X_i^L = 2 \), and \(X_i^U = 17 \), find what value the 4-bit string \(X_i = (1010) \) would represent. First get decoded value for
 \(S_i = 1010 = 2^3 \times 1 + 2^2 \times 0 + 2^1 \times 1 + 2^0 \times 0 = 10 \)
 then
 \[X_i = 2 + \frac{(17 - 2)}{(2^4 - 1)} \times 10 = 12 \]

The accuracy obtained with a 4-bit code is \(1/16 \) of search space.

By increasing the string length by 1-bit, accuracy increases to \(1/32 \).
Value Encoding

The Value encoding can be used in problems where values such as real numbers are used. Use of binary encoding for this type of problems would be difficult.

1. In value encoding, every chromosome is a sequence of some values.
2. The Values can be anything connected to the problem, such as:
 - real numbers, characters or objects.

 Examples:
 - **Chromosome A** 1.2324 5.3243 0.4556 2.3293 2.4545
 - **Chromosome B** ABDJEIFJDHDIERJFDLDFLFGT
 - **Chromosome C** (back), (back), (right), (forward), (left)
3. Value encoding is often necessary to develop some new types of crossovers and mutations specific for the problem.
Permutation Encoding

Permutation encoding can be used in ordering problems, such as traveling salesman problem or task ordering problem.

1. In permutation encoding, every chromosome is a string of numbers that represent a position in a sequence.

 Chromosome A 1 5 3 2 6 4 7 9 8
 Chromosome B 8 5 6 7 2 3 1 4 9

2. Permutation encoding is useful for ordering problems. For some problems, crossover and mutation corrections must be made to leave the chromosome consistent.

Examples:

1. The Traveling Salesman problem:
 There are cities and given distances between them. Traveling salesman has to visit all of them, but he does not want to travel more than necessary. Find a sequence of cities with a minimal traveled distance. Here, encoded chromosomes describe the order of cities the salesman visits.

2. The Eight Queens problem:
 There are eight queens. Find a way to place them on a chess board so that no two queens attack each other. Here, encoding describes the position of a queen on each row.
Tree Encoding

Tree encoding is used mainly for evolving programs or expressions. For genetic programming:

- In tree encoding, every chromosome is a tree of some objects, such as functions or commands in programming language.
- Tree encoding is useful for evolving programs or any other structures that can be encoded in trees.
- The crossover and mutation can be done relatively easy way.

Example:

![Chromosomes with tree encoding](image)

Note: Tree encoding is good for evolving programs. The programming language LISP is often used. Programs in LISP can be easily parsed as a tree, so the crossover and mutation is relatively easy.
3. Operators of Genetic Algorithm

Genetic operators used in genetic algorithms maintain genetic diversity. Genetic diversity or variation is a necessity for the process of evolution. Genetic operators are analogous to those which occur in the natural world:

- **Reproduction** (or Selection);
- **Crossover** (or Recombination); and
- **Mutation**.

In addition to these operators, there are some parameters of GA.

One important parameter is **Population size**.

- Population size says how many chromosomes are in population (in one generation).
- If there are only few chromosomes, then GA would have a few possibilities to perform crossover and only a small part of search space is explored.
- If there are many chromosomes, then GA slows down.
- Research shows that after some limit, it is not useful to increase population size, because it does not help in solving the problem faster. The population size depends on the type of encoding and the problem.
Reproduction, or Selection

Reproduction is usually the first operator applied on population. From the population, the chromosomes are selected to be parents to crossover and produce offspring.

The problem is how to select these chromosomes?

According to Darwin's evolution theory "survival of the fittest" – the best ones should survive and create new offspring.

- The Reproduction operators are also called Selection operators.
- Selection means extract a subset of genes from an existing population, according to any definition of quality. Every gene has a meaning, so one can derive from the gene a kind of quality measurement called fitness function. Following this quality (fitness value), selection can be performed.
- Fitness function quantifies the optimality of a solution (chromosome) so that a particular solution may be ranked against all the other solutions. The function depicts the closeness of a given ‘solution’ to the desired result.

Many reproduction operators exist and they all essentially do the same thing. They pick from current population the strings of above average and insert their multiple copies in the mating pool in a probabilistic manner.

The most commonly used methods of selecting chromosomes for parents to crossover are:

- Roulette wheel selection,
- Boltzmann selection,
- Tournament selection,
- Rank selection
- Steady state selection.

The Roulette wheel and Boltzmann selections methods are illustrated next.
Example of Selection

Evolutionary Algorithms is to maximize the function $f(x) = x^2$ with x in the integer interval $[0, 31]$, i.e., $x = 0, 1, \ldots, 30, 31$.

1. The first step is encoding of chromosomes; use binary representation for integers; 5-bits are used to represent integers up to 31.
2. Assume that the population size is 4.
3. Generate initial population at random. They are chromosomes or genotypes; e.g., 01101, 11000, 01000, 10011.
4. Calculate fitness value for each individual.
 (a) Decode the individual into an integer (called phenotypes),
 01101 → 13; 11000 → 24; 01000 → 8; 10011 → 19;
 (b) Evaluate the fitness according to $f(x) = x^2$,
 13 → 169; 24 → 576; 8 → 64; 19 → 361.
5. Select parents (two individuals) for crossover based on their fitness in p_i. Out of many methods for selecting the best chromosomes, if roulette-wheel selection is used, then the probability of the i^{th} string in the population is $p_i = F_i / (\sum_{j=1}^{n} F_j)$, where
 - F_i is fitness for the string i in the population, expressed as $f(x)$
 - p_i is probability of the string i being selected,
 - n is no of individuals in the population, is population size, $n=4$
 - $n \times p_i$ is expected count

<table>
<thead>
<tr>
<th>String No</th>
<th>Initial Population</th>
<th>X value</th>
<th>Fitness f_i</th>
<th>p_i</th>
<th>Expected count $N \times \text{Prob } i$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>01101</td>
<td>13</td>
<td>169</td>
<td>0.14</td>
<td>0.58</td>
</tr>
<tr>
<td>2</td>
<td>11000</td>
<td>24</td>
<td>576</td>
<td>0.49</td>
<td>1.97</td>
</tr>
<tr>
<td>3</td>
<td>01000</td>
<td>8</td>
<td>64</td>
<td>0.06</td>
<td>0.22</td>
</tr>
<tr>
<td>4</td>
<td>10011</td>
<td>19</td>
<td>361</td>
<td>0.31</td>
<td>1.23</td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td></td>
<td>1170</td>
<td>1.00</td>
<td>4.00</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td>293</td>
<td>0.25</td>
<td>1.00</td>
</tr>
<tr>
<td>Max</td>
<td></td>
<td></td>
<td>576</td>
<td>0.49</td>
<td>1.97</td>
</tr>
</tbody>
</table>

The string no 2 has maximum chance of selection.
Roulette wheel selection (Fitness-Proportionate Selection)

Roulette-wheel selection, also known as Fitness Proportionate Selection, is a genetic operator, used for selecting potentially useful solutions for recombination.

In fitness-proportionate selection:
- the chance of an individual's being selected is proportional to its fitness, greater or less than its competitors' fitness.
- conceptually, this can be thought as a game of Roulette.

The Roulette-wheel simulates 8 individuals with fitness values F_i, marked at its circumference; e.g.,
- the 5th individual has a higher fitness than others, so the wheel would choose the 5th individual more than other individuals.
- the fitness of the individuals is calculated as the wheel is spun $n = 8$ times, each time selecting an instance, of the string, chosen by the wheel pointer.

Probability of i^{th} string is $p_i = \frac{F_i}{\sum_{j=1}^{n} F_j}$, where $n =$ no of individuals, called population size; $p_i =$ probability of i^{th} string being selected; $F_i =$ fitness for i^{th} string in the population.

Because the circumference of the wheel is marked according to a string's fitness, the Roulette-wheel mechanism is expected to make $\frac{F_i}{F}$ copies of the i^{th} string.

Average fitness $= \frac{\sum F_j}{n}$; Expected count $= (n = 8) \times p_i$

Cumulative Probability$_5$ $= \sum_{i=1}^{N=5} p_i$
Boltzmann Selection

Simulated annealing is a method used to minimize or maximize a function.

- This method simulates the process of slow cooling of molten metal to achieve the minimum function value in a minimization problem.

- The cooling phenomena is simulated by controlling a temperature like parameter introduced with the concept of Boltzmann probability distribution.

- The system in thermal equilibrium at a temperature T has its energy distribution based on the probability defined by

$$P(E) = \exp\left(\frac{-E}{kT}\right)$$

were k is Boltzmann constant.

- This expression suggests that a system at a higher temperature has almost uniform probability at any energy state, but at lower temperature it has a small probability of being at a higher energy state.

- Thus, by controlling the temperature T and assuming that the search process follows Boltzmann probability distribution, the convergence of the algorithm is controlled.
Crossover is a genetic operator that combines (mates) two chromosomes (parents) to produce a new chromosome (offspring). The idea behind crossover is that the new chromosome may be better than both of the parents if it takes the best characteristics from each of the parents. Crossover occurs during evolution according to a user-definable crossover probability. Crossover selects genes from parent chromosomes and creates a new offspring.

The Crossover operators are of many types.
 - one simple way is, **One-Point crossover**.
 - the others are **Two Point, Uniform, Arithmetic, and Heuristic crossovers**.

The operators are selected based on the way chromosomes are encoded.
One-Point Crossover

One-Point crossover operator randomly selects one crossover point and then copy everything before this point from the first parent and then everything after the crossover point copy from the second parent. The Crossover would then look as shown below.

Consider the two parents selected for crossover.

Parent 1: 1 1 0 1 1 | 0 0 1 0 0 1 1 0 1 1 0
Parent 2: 1 1 0 1 1 | 1 1 0 0 0 0 1 1 1 1 0

Interchanging the parents chromosomes after the crossover points -

The Offspring produced are:

Offspring 1: 1 1 0 1 1 | 1 1 0 0 0 1 1 1 1 0
Offspring 2: 1 1 0 1 1 | 0 0 1 0 0 1 1 0 1 1 0

Note: The symbol, a vertical line, | is the chosen crossover point.
Two-Point Crossover

Two-Point crossover operator randomly selects two crossover points within a chromosome then interchanges the two parent chromosomes between these points to produce two new offspring.

Consider the two parents selected for crossover:

Parent 1 1 1 0 1 1 | 0 0 1 0 0 1 1 | 0 1 1 0
Parent 2 1 1 0 1 1 | 1 1 0 0 0 0 1 | 1 1 1 0

Interchanging the parents' chromosomes between the crossover points - The Offspring produced are:

Offspring 1 1 1 0 1 1 | 0 0 1 0 0 1 1 | 0 1 1 0
Offspring 2 1 1 0 1 1 | 0 0 1 0 0 1 1 | 0 1 1 0
Uniform Crossover

Uniform crossover operator decides (with some probability – know as the mixing ratio) which parent will contribute how the gene values in the offspring chromosomes. The crossover operator allows the parent chromosomes to be mixed at the gene level rather than the segment level (as with one and two point crossover).

Consider the two parents selected for crossover.

| Parent 1 | 1 1 0 1 1 0 0 1 0 0 1 1 0 1 1 0 |
| Parent 2 | 1 1 0 1 1 1 0 0 0 0 1 1 1 1 0 |

If the mixing ratio is 0.5 approximately, then half of the genes in the offspring will come from parent 1 and other half will come from parent 2.

The possible set of offspring after uniform crossover would be:

| Offspring 1 | 1 1 0 1 2 1 2 0 1 0 1 0 2 1 1 1 1 |
| Offspring 2 | 1 2 1 0 1 2 0 1 0 1 0 0 1 2 1 2 0 1 |

Note: The subscripts indicate which parent the gene came from.
Arithmetic crossover operator linearly combines two parent chromosome vectors to produce two new offspring according to the equations:

\[
\text{Offspring}_1 = a \times \text{Parent}_1 + (1-a) \times \text{Parent}_2 \\
\text{Offspring}_2 = (1-a) \times \text{Parent}_1 + a \times \text{Parent}_2
\]

where \(a \) is a random weighting factor chosen before each crossover operation.

Consider two parents (each of 4 float genes) selected for crossover:

\[
\begin{array}{cccc}
\text{Parent}_1 & 0.3 & 1.4 & 0.2 & 7.4 \\
\text{Parent}_2 & 0.5 & 4.5 & 0.1 & 5.6 \\
\end{array}
\]

Applying the above two equations and assuming the weighting factor \(a = 0.7 \), applying above equations, we get two resulting offspring. The possible set of offspring after arithmetic crossover would be:

\[
\begin{array}{cccc}
\text{Offspring}_1 & 0.36 & 2.33 & 0.17 & 6.87 \\
\text{Offspring}_2 & 0.402 & 2.981 & 0.149 & 5.842 \\
\end{array}
\]
Heuristic

Heuristic crossover operator uses the fitness values of the two parent chromosomes to determine the direction of the search.

The offspring are created according to the equations:

\[
\text{Offspring}_1 = \text{BestParent} + r \times (\text{BestParent} - \text{WorstParent})
\]

\[
\text{Offspring}_2 = \text{BestParent}
\]

where \(r \) is a random number between 0 and 1.

It is possible that \textit{offspring}_1 will not be feasible. It can happen if \(r \) is chosen such that one or more of its genes fall outside of the allowable upper or lower bounds. For this reason, heuristic crossover has a user defined parameter \(n \) for the number of times to try and find an \(r \) that results in a feasible chromosome. If a feasible chromosome is not produced after \(n \) tries, the worst parent is returned as \textit{offspring}_1.
3 Mutation

After a crossover is performed, mutation takes place. Mutation is a genetic operator used to maintain genetic diversity from one generation of a population of chromosomes to the next.

Mutation occurs during evolution according to a user-definable mutation probability, usually set to fairly low value, say 0.01 a good first choice.

Mutation alters one or more gene values in a chromosome from its initial state. This can result in entirely new gene values being added to the gene pool. With the new gene values, the genetic algorithm may be able to arrive at better solution than was previously possible.

Mutation is an important part of the genetic search, helps to prevent the population from stagnating at any local optima. Mutation is intended to prevent the search falling into a local optimum of the state space.

The Mutation operators are of many type.

– one simple way is, Flip Bit.

– the others are Boundary, Non-Uniform, Uniform, and Gaussian.

The operators are selected based on the way chromosomes are encoded.
Flip Bit

The mutation operator simply inverts the value of the chosen gene.
i.e. 0 goes to 1 and 1 goes to 0.
This mutation operator can only be used for binary genes.

Consider the two original off-springs selected for mutation.

| Original offspring 1 | 1 1 0 1 1 1 1 0 0 0 0 1 1 1 1 0 |
| Original offspring 2 | 1 1 0 1 1 0 0 1 0 0 1 1 0 1 1 0 |

Invert the value of the chosen gene as 0 to 1 and 1 to 0

The Mutated Off-spring produced are:

| Mutated offspring 1 | 1 1 0 0 1 1 1 0 0 0 0 1 1 1 1 0 |
| Mutated offspring 2 | 1 1 0 1 1 0 1 1 0 0 1 1 0 1 0 0 |
- **Boundary**
 The mutation operator replaces the value of the chosen gene with either the upper or lower bound for that gene (chosen randomly).
 This mutation operator can only be used for integer and float genes.

- **Non-Uniform**
 The mutation operator increases the probability such that the amount of the mutation will be close to 0 as the generation number increases. This mutation operator prevents the population from stagnating in the early stages of the evolution then allows the genetic algorithm to fine tune the solution in the later stages of evolution.
 This mutation operator can only be used for integer and float genes.

- **Uniform**
 The mutation operator replaces the value of the chosen gene with a uniform random value selected between the user-specified upper and lower bounds for that gene.
 This mutation operator can only be used for integer and float genes.

- **Gaussian**
 The mutation operator adds a unit Gaussian distributed random value to the chosen gene. The new gene value is clipped if it falls outside of the user-specified lower or upper bounds for that gene.
 This mutation operator can only be used for integer and float genes.
4. **Basic Genetic Algorithm**:

Examples to demonstrate and explain: Random population, Fitness, Selection, Crossover, Mutation, and Accepting.

- **Example 1**:
 Maximize the function $f(x) = x^2$ over the range of integers from 0 . . . 31.

 Note: This function could be solved by a variety of traditional methods such as a hill-climbing algorithm which uses the derivative.

 One way is to:
 - Start from any integer x in the domain of f
 - Evaluate at this point x the derivative f'
 - Observing that the derivative is $+ve$, pick a new x which is at a small distance in the $+ve$ direction from current x
 - Repeat until $x = 31$

 See, how a genetic algorithm would approach this problem?
Genetic Algorithm approach to problem - Maximize the function $f(x) = x^2$

1. Devise a means to represent a solution to the problem:
 Assume, we represent x with five-digit unsigned binary integers.

2. Devise a heuristic for evaluating the fitness of any particular solution:
 The function $f(x)$ is simple, so it is easy to use the $f(x)$ value itself to rate the fitness of a solution; else we might have considered a more simpler heuristic that would more or less serve the same purpose.

3. Coding - Binary and the String length:
 GAs often process binary representations of solutions. This works well, because crossover and mutation can be clearly defined for binary solutions. A Binary string of length 5 can represent 32 numbers (0 to 31).

4. Randomly generate a set of solutions:
 Here, consider a population of four solutions. However, larger populations are used in real applications to explore a larger part of the search. Assume, four randomly generated solutions as: 01101, 11000, 01000, 10011. These are chromosomes or genotypes.

5. Evaluate the fitness of each member of the population:
 The calculated fitness values for each individual are:
 (a) Decode the individual into an integer (called phenotypes),

<table>
<thead>
<tr>
<th>String No</th>
<th>Initial Population (chromosome)</th>
<th>X value (Phenotypes)</th>
<th>Fitness $f(x) = x^2$</th>
<th>Prob i (fraction of total)</th>
<th>Expected count $N \times \text{Prob } i$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 1 1 0 1</td>
<td>13</td>
<td>169</td>
<td>0.14</td>
<td>0.58</td>
</tr>
<tr>
<td>2</td>
<td>1 1 0 0 0</td>
<td>24</td>
<td>576</td>
<td>0.49</td>
<td>1.97</td>
</tr>
<tr>
<td>3</td>
<td>0 1 0 0 0</td>
<td>8</td>
<td>64</td>
<td>0.06</td>
<td>0.22</td>
</tr>
<tr>
<td>4</td>
<td>1 0 0 1 1</td>
<td>19</td>
<td>361</td>
<td>0.31</td>
<td>1.23</td>
</tr>
<tr>
<td>Total (sum)</td>
<td></td>
<td></td>
<td>1170</td>
<td>1.00</td>
<td>4.00</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td>293</td>
<td>0.25</td>
<td>1.00</td>
</tr>
<tr>
<td>Max</td>
<td></td>
<td></td>
<td>576</td>
<td>0.49</td>
<td>1.97</td>
</tr>
</tbody>
</table>

 Thus, the string no 2 has maximum chance of selection.
6. Produce a new generation of solutions by picking from the existing pool of solutions with a preference for solutions which are better suited than others:

We divide the range into four bins, sized according to the relative fitness of the solutions which they represent.

<table>
<thead>
<tr>
<th>Strings</th>
<th>Prob i</th>
<th>Associated Bin</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 1 0 1</td>
<td>0.14</td>
<td>0.0 . . . 0.14</td>
</tr>
<tr>
<td>1 1 0 0 0</td>
<td>0.49</td>
<td>0.14 . . . 0.63</td>
</tr>
<tr>
<td>0 1 0 0 0</td>
<td>0.06</td>
<td>0.63 . . . 0.69</td>
</tr>
<tr>
<td>1 0 0 1 1</td>
<td>0.31</td>
<td>0.69 . . . 1.00</td>
</tr>
</tbody>
</table>

By generating 4 uniform $(0, 1)$ random values and seeing which bin they fall into we pick the four strings that will form the basis for the next generation.

<table>
<thead>
<tr>
<th>Random No</th>
<th>Falls into bin</th>
<th>Chosen string</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.08</td>
<td>0.0 . . . 0.14</td>
<td>0 1 1 0 1</td>
</tr>
<tr>
<td>0.24</td>
<td>0.14 . . . 0.63</td>
<td>1 1 0 0 0</td>
</tr>
<tr>
<td>0.52</td>
<td>0.14 . . . 0.63</td>
<td>1 1 0 0 0</td>
</tr>
<tr>
<td>0.87</td>
<td>0.69 . . . 1.00</td>
<td>1 0 0 1 1</td>
</tr>
</tbody>
</table>

7. Randomly pair the members of the new generation

Random number generator decides for us to mate the first two strings together and the second two strings together.

8. Within each pair swap parts of the members solutions to create offspring which are a mixture of the parents:

For the first pair of strings: 0 1 1 0 1 , 1 1 0 0 0
- We randomly select the crossover point to be after the fourth digit.

 Crossing these two strings at that point yields:
 0 1 1 0 1 \Rightarrow 0 1 1 0 | 1 \Rightarrow 0 1 1 0 0
 1 1 0 0 0 \Rightarrow 1 1 0 0 | 0 \Rightarrow 1 1 0 0 1

For the second pair of strings: 1 1 0 0 0 , 1 0 0 1 1
- We randomly select the crossover point to be after the second digit.

 Crossing these two strings at that point yields:
 1 1 0 0 0 \Rightarrow 1 1 | 0 0 0 \Rightarrow 1 1 0 1 1
 1 0 0 1 1 \Rightarrow 1 0 | 0 1 1 \Rightarrow 1 0 0 0 0
9. Randomly mutate a very small fraction of genes in the population:
With a typical mutation probability of per bit it happens that none of the bits
in our population are mutated.

10. Go back and re-evaluate fitness of the population (new generation):
This would be the first step in generating a new generation of solutions.
However it is also useful in showing the way that a single iteration of the
genetic algorithm has improved this sample.

<table>
<thead>
<tr>
<th>String No</th>
<th>Initial Population (chromosome)</th>
<th>X value (Phenotypes)</th>
<th>Fitness $f(x) = x^2$</th>
<th>Prob i (fraction of total)</th>
<th>Expected count</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 1 1 0 0</td>
<td>12</td>
<td>144</td>
<td>0.082</td>
<td>0.328</td>
</tr>
<tr>
<td>2</td>
<td>1 1 0 0 1</td>
<td>25</td>
<td>625</td>
<td>0.356</td>
<td>1.424</td>
</tr>
<tr>
<td>3</td>
<td>1 1 0 1 1</td>
<td>27</td>
<td>729</td>
<td>0.415</td>
<td>1.660</td>
</tr>
<tr>
<td>4</td>
<td>1 0 0 0 0</td>
<td>16</td>
<td>256</td>
<td>0.145</td>
<td>0.580</td>
</tr>
<tr>
<td>Total (sum)</td>
<td></td>
<td></td>
<td>1754</td>
<td>1.000</td>
<td>4.000</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td>439</td>
<td>0.250</td>
<td>1.000</td>
</tr>
<tr>
<td>Max</td>
<td></td>
<td></td>
<td>729</td>
<td>0.415</td>
<td>1.660</td>
</tr>
</tbody>
</table>

Observe that:

1. Initial populations: At start step 5 were
 \[0 1 1 0 1, 1 1 0 0 0, 0 1 0 0 0, 1 0 0 1 1\]
 After one cycle, new populations, at step 10 to act as initial population
 \[0 1 1 0 0, 1 1 0 0 1, 1 1 0 1 1, 1 0 0 0 0\]

2. The total fitness has gone from \[1170\] to \[1754\] in a single generation.

3. The algorithm has already come up with the string 11011 (i.e $x = 27$) as
 a possible solution.
Example 2 : Two bar pendulum

Two uniform bars are connected by pins at A and B and supported at A. Let a horizontal force P acts at C.

![Two bar pendulum diagram]

Given : Force $P = 2$, Length of bars $t_1 = 2, t_2 = 2$, Bar weights $W_1 = 2, W_2 = 2$. angles = θ_i

Find : Equilibrium configuration of the system if fiction at all joints are neglected?

Solution : Since there are two unknowns θ_1 and θ_2, we use 4-bit binary for each unknown.

$$\text{Accuracy} = \frac{X^u - X^l}{2^4 - 1} = \frac{90 - 0}{15} = 6^0$$

Hence, the binary coding and the corresponding angles θ_i are given as

$$\theta_i = \frac{X^u - X^l}{2^4 - 1} \quad \text{where } Si \text{ is decoded Value of the } i^{th} \text{ chromosome.}$$

E.g. the 6th chromosome binary code $(0\ 1\ 0\ 1)$ would have the corresponding angle given by $Si = 0\ 1\ 0\ 1 = 2^3 \times 0 + 2^2 \times 1 + 2^1 \times 0 + 2^0 \times 1 = 5$

$$\theta_i = \frac{90 - 0}{15} \times 5 = 30$$

The binary coding and the angles are given in the table below.

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Binary code Si</th>
<th>Angle θ_i</th>
<th>S. No.</th>
<th>Binary code Si</th>
<th>Angle θ_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 0 0 0</td>
<td>0</td>
<td>9</td>
<td>1 0 0 0</td>
<td>48</td>
</tr>
<tr>
<td>2</td>
<td>0 0 0 1</td>
<td>6</td>
<td>10</td>
<td>1 0 0 1</td>
<td>54</td>
</tr>
<tr>
<td>3</td>
<td>0 0 1 0</td>
<td>12</td>
<td>11</td>
<td>1 0 1 0</td>
<td>60</td>
</tr>
<tr>
<td>4</td>
<td>0 0 1 1</td>
<td>18</td>
<td>12</td>
<td>1 0 1 1</td>
<td>66</td>
</tr>
<tr>
<td>5</td>
<td>0 1 0 0</td>
<td>24</td>
<td>13</td>
<td>1 1 0 0</td>
<td>72</td>
</tr>
<tr>
<td>6</td>
<td>0 1 0 1</td>
<td>30</td>
<td>14</td>
<td>1 1 0 1</td>
<td>78</td>
</tr>
<tr>
<td>7</td>
<td>0 1 1 0</td>
<td>36</td>
<td>15</td>
<td>1 1 1 0</td>
<td>84</td>
</tr>
<tr>
<td>8</td>
<td>0 1 1 1</td>
<td>42</td>
<td>16</td>
<td>1 1 1 1</td>
<td>90</td>
</tr>
</tbody>
</table>

Note : The total potential for two bar pendulum is written as

$$\Pi = -P[((t_1 \sin \theta_1 + t_2 \sin \theta_2)] - (W_1 t_1 /2)\cos \theta_1 - W_2 [(t_2 /2) \cos \theta_2 + t_1 \cos \theta_1] \quad \text{(Eq.1)}$$

Substituting the values for P, W_1, W_2, t_1, t_2 all as 2, we get,

$$\Pi (\theta_1, \theta_2) = -4 \sin \theta_1 - 6 \cos \theta_1 - 4 \sin \theta_2 - 2 \cos \theta_2 = \text{function } f \quad \text{(Eq. 2)}$$

θ_1, θ_2 lies between 0 and 90 both inclusive ie $0 \leq \theta_1, \theta_2 \leq 90 \quad \text{(Eq. 3)}$

Equilibrium configuration is the one which makes Π a minimum.

Since the objective function is ve, instead of minimizing the function f let us maximize $-f = f'$. The maximum value of $f' = 8$ when θ_1 and θ_2 are zero.

Hence the fitness function F is given by $F = -f - 7 = f' - 7 \quad \text{(Eq. 4)}$
First randomly generate 8 population with 8 bit strings as shown in table below.

<table>
<thead>
<tr>
<th>Population No.</th>
<th>Population of 8 bit strings (Randomly generated)</th>
<th>Corresponding Angles (from table above)</th>
<th>(F = -f - 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 0 0 0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0 0 1 0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0 0 0 1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>0 0 1 0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0 1 1 0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1 1 0 0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>1 1 1 0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>0 1 1 1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

These angles and the corresponding to fitness function are shown below.

Fig. Fitness function \(F \) for various population

The above Table and the Fig. illustrates that:

- GA begins with a population of random strings.
- Then, each string is evaluated to find the fitness value.
- The population is then operated by three operators –

 Reproduction, *Crossover* and *Mutation*, to create new population.
- The new population is further evaluated tested for termination.
- If the termination criteria are not met, the population is iteratively operated
 by the three operators and evaluated until the termination criteria are met.
- One cycle of these operation and the subsequent evaluation procedure is
 known as a *Generation* in GA terminology.
5. References: Textbooks

6. Related documents from open source, mainly internet. An exhaustive list is being prepared for inclusion at a later date.